

PRODUCT INFORMATION

SILICA: WATER FILTRATION SAND UNIFORMITY COEFFICIENT: ≤1.4

PLANT: THOMPSON, OH

R.W. Sidley's operates a state of the art processing plant that produces the highest quality products virtually free of deleterious materials. Our processed silica sand is from our Thompson mine part of the Sharon conglomerate formation. All Silica Filter Sands are washed, dried and screened at the Thompson plant and meet AWWA B-100-16 standards for granular filter media and NSF-61 requirements for drinking water components.

Tighter U.C. size of 1.3 available upon request.

Available packaging: 50 lb. bags, 3,000 lb. super sacks, 4,000 lb. super sacks and bulk quantities.

TYPICAL LABORATORY SIEVE ANALYSIS									
AWWA Spec.	.3545mm .4050mm .4555mm .5060mm .5565mm .6575mm .80-1.2								
Uniformity									
Coefficient	≤1.4	≤1.4	≤1.4	≤1.4	≤1.4	≤1.4	≤1.4		
Specification									
Mesh Size	Cumulative % Passing								
1/4									
4									
6									
8									
10									
12							100		
14						100	95		
16					100	98	53		
18		100	100	100	99	79	17		
20		97	96	91	81	50	1		
25		77	71	50	33	17	Т		
30	100	51	41	15	6	2			
35	75	18	9	3	Т	Т			
40	19	5	2	1					
50	Т	Т	Т	Т					
60									
70									
100									
140									
200									
270									
Pan	0	0	0	0	0	0			
Typical E.S.	0.366	0.456	0.502	0.560	0.618	0.659	1.102		
Typical U.C.	1.311	1.399	1.334	1.330	1.278	1.369	1.318		

	CHEMICAL ANALYSIS					
	Tests	Results/Units				
	SiO ₂	99.3%				
	Fe ₂ O ₃	0.38%				
	Al ₂ O ₃	0.21%				
	K ₂ O	0.054%				
v	TiO ₂	0.025%				
7.	Na₂O	0.005%				
03.29	Total Mg	0.004%				
3	Total Ca	0.003%				
ij	Ni	<0.001%				
Revised:	Mn	0.001%				
	Cr ₂ O ₃	<0.001%				

PHYSICAL ANALYSIS				
Silica				
Percent Loss, Acid Solubility (ASTM D3042)	0.4%			
Moh's Hardness	7			
Loss on Ignition	0.14%			
рН	6.4			
Specific Gravity	2.63-2.65			
Absorption	0.31%			

 $\label{tensor} \mbox{Testing: Results are typical for the product.}$

Laboratory Sieve Analysis: Testing was conducted at R.W. Sidley, Inc., Thompson, OH Tests performed in accordance with ASTM D-75, ASTM C-136, and AASHTO T-176 Chemical Analysis: Testing conducted by NSL Analytical, Cleveland, OH Physical Analysis: Testing conducted by NSL Analytical, Cleveland, OH

R.W. Sidley, Inc. Filtration Sands & Gravels are NSF Certified annually.

PRODUCT INFORMATION

SILICA: WATER FILTRATION SAND UNIFORMITY COEFFICIENT: ≤1.5* PLANT: THOMPSON, OH

R.W. Sidley's operates a state of the art processing plant that produces the highest quality products virtually free of deleterious materials. Our processed silica sand is from our Thompson mine part of the Sharon conglomerate formation. All Silica Filter Sands are washed, dried and screened at the Thompson plant and meet AWWA B-100-16 standards for granular filter media and NSF-61 requirements for drinking water components.

Tighter U.C. sizes of 1.3-1.4 available upon request. *All sands are ≤1.5 except for 1.5-.25mm.

Available packaging: 50 lb. bags, 3,000 lb. super sacks, 4,000 lb. super sacks and bulk quantities.

	TYPICAL LABORATORY SIEVE ANALYSIS										
AWWA Spec.	.1525mm	.2535mm	.3040mm	.3545mm	.4050mm	.4555mm	.5060mm	.5070mm	.5565mm	.6575mm	.80-1.2mm
Uniformity Coefficient Specification	≤1.8*	≤1.5	≤1.5	≤1.5	≤1.5	≤1.5	≤1.5	≤1.5	≤1.5	≤1.5	≤1.5
Mesh Size					Cun	nulative % Pas	sing				
1/4											
4											
6											
8											100
10											95
12											74
14										100	47
16								100			29
18					100		100				12
20				100							2
25				87	72	74	53				T
30	100	100		69	41	41	20		6		
35	99	87	71	37	13	7	4	Т	Т	Т	
40	82	38		12	3	1	1				
50	32	4	1	1	Т	Т					
60	14	1	1	Т							
70	1	1	Т								
100	2										
140											
200											
270 Pan	0	0	0	0	0	0	0	0	0	0	0
		_					_	_	_	_	
Typical E.S.	0.227	0.323	0.347	0.403	0.455	0.510	0.539		0.614	0.642	1.102
Typical U.C.	1.628	1.418	1.392	1.418	1.450	1.448	1.362	1.280	1.406	1.430	1.494

	CHEIVIICAL ANALYSIS						
	Tests	Results/Units					
	SiO ₂	99.3%					
	Fe ₂ O ₃	0.38%					
	Al ₂ O ₃	0.21%					
9.22	K ₂ O	0.054%					
	TiO ₂	0.025%					
	Na₂O	0.005%					
7	Total Mg	0.004%					
33	Total Ca	0.003%					
Revised: 03.29.22	Ni	<0.001%					
	Mn	0.001%					
Re	Cr ₂ O ₃	<0.001%					

CHEMICAL ANALYSIS

PHYSICAL ANALYSIS				
Silica				
Percent Loss, Acid Solubility (ASTM D3042)	0.4%			
Moh's Hardness	7			
Loss on Ignition	0.14%			
рН	6.4			
Specific Gravity	2.63-2.65			
Absorption	0.31%			

Testing: Results are typical for the product.

Laboratory Sieve Analysis: Testing was conducted at R.W. Sidley, Inc., Thompson, OH Tests performed in accordance with ASTM D-75, ASTM C-136, and AASHTO T-176 Chemical Analysis: Testing conducted by NSL Analytical, Cleveland, OH Physical Analysis: Testing conducted by NSL Analytical, Cleveland, OH

R.W. Sidley, Inc. Filtration Sands & Gravels are NSF Certified annually.